и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
и sin36+cos36 / cos18-sin18
а) sin59*cos61+sin61*cos59 = Sin(59 +61) = Sin120 = √3/2
cos58*cos62-sin62*sin58 = Cos(58 +62) = Cos120 = -1/2
сама дробь = -√3
б) sin36+cos36= Сos54 +Cos36 = 2Cos45*Cos9 = √2Cos9
cos18-sin18 = Cos18 -Cos72 = 2Sin45*Sin54 = √2Cos36
сама дробь = Сos9/Cos36
первый ответ отрицательный, второй положительный. Так что 1-е выражение < 2-го