М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
витя10
витя10
08.02.2023 22:01 •  Алгебра

1часть сахара : 2 части сливочного масла : 3 части муки. сколько потребуется тамаре муки, чтобы получить 2,5 кг теста? ответ ок- руглите до сотых.

👇
Ответ:
Сос1111111
Сос1111111
08.02.2023
Всего частей 1+2+3=6.   ⇒
2,5*3/6=2,5/2=1,25 (кг) муки.
4,5(44 оценок)
Открыть все ответы
Ответ:
Rudisaleh
Rudisaleh
08.02.2023

Дано:  прямоугольный Δ

a; b  - катеты

S=90 см²

S₁+S₂ = а²+b² =369 см₂

a-? b-?

Решение

1) Первое уравнение получаем из условия:

а²+b² = 369

2) Площадь прямоугольного треугольника равна половине произведения катетов, получаем второе уравнение:

\frac{ab}{2}=90=ab=90*2=ab=180

3)  Решаем систему: (a>0;  b>0)

\left \{ {{a^2+b^2=369} \atop{ab=180}} \right.

b=\frac{180}{a}

a^2+(\frac{180}{a})^2=369

a≠0

a^4+32400=369a^2

a^4-369a^2+32400=0

Замена: а²=t   ( t > 0)

Решаем уравнение:

t² - 369t + 32400 = 0

D = 369² - 4·1·32400 = 136161 - 129600 = 6561 = 81²

t₁ = (369-81)/2 = 144

t₂ = (369+81)/2 = 225

Обратная замена:

При t₁ = 144  => a² = 144  => a₁ = - √144 = - 12 < 0

                                             a₂ = √144 = 12 > 0

При t₂ = 225  => a² = 225  => a₃ = - √225 = - 15 < 0

                                              a₄ = √225 = 15 > 0

Зная а₁=12 и а₂ = 15, найдем b

b₁ = 180/12 = 15

b₂ = 180/15 = 12

Получаем два решения взаимозаменяемых:

а=12; b=15

а=15; b=12

ответ: 12 см; 15 см - катеты

4,7(46 оценок)
Ответ:
Кек11111111118
Кек11111111118
08.02.2023

   

План-конспект урока

Алгебра

8 класс

Тема: Доказательство неравенств

Цель:

Образовательная: формирование умений доказательства неравенств, формирование

Этапы занятия:

Организационный момент.

Актуализация опорных занятий.

Усвоение новых знаний и действий.

Первичное закрепление знаний и действий.

Контроль и самопроверка знаний, рефлексия.

Подведение итогов занятий.

ХОД ЗАНЯТИЯ

1. Организационный момент. Подготовка учащихся к работе на занятии.

2. Подготовка к основному этапу. Обеспечение мотивации, значимости изучаемой темы занятия и принятия учащимися учебно-познавательной деятельности, актуализация опорных знаний.

а) С неравенств сравниваются большие и малые величины;

b) Во С какого приема мы умеем доказывать неравенство вида aответ:

- Один из приемов доказательства неравенства ab) сводят к доказательству равносильного ему неравенства a-b<0 (a-b>0);

c) Повторим данное доказательство на примере неравенства Коши.

“Среднее арифметическое неотрицательных чисел не меньше их среднего геометрического”:

Доказать: 

Доказательство: Рассмотрим разность левой и правой частей неравенства:

Неотрицательность квадрата любого вещественного числа очевидна.

Значит,   – верное неравенство.

3.

a) Во Попробуем сформулировать другой прием.

ответ (учитель ответить на во Другой прием состоит в том, чтобы показать, что данное неравенство является следствием некоторого очевидного неравенства:

(a-b)2  0, (a+b)2  0 или неравенства Коши   , при а0, b0, выражающее соотношение между средним арифметическим и средним геометрическим двух неотрицательных чисел;

b) Докажем, что (a+b)(ab+1)  4ab, при а0, b0.

Доказательство: Рассмотрим a+b и ab+1.

Используем очевидное неравенство Коши:

второго множителя.

Перемножим получившиеся неравенства:

с) Так же используют следующий прием: предполагают, что данное неравенство верно при заданных значениях переменных, строят цепочку неравенств-следствий, приводящую к некоторому очевидному неравенству. Рассматривая затем эту цепочку неравенств снизу вверх, показывают, что данное неравенство является следствием полученного очевидного неравенства и потому верно при указанных значениях переменных.

Значит, доказательство (a+b)·(ab+1)  4ab, при а0, b0 можно выполнить другим Допустим, что при а0, b0 данное неравенство верно, т.е.:

Используя неравенство Коши дважды для каждого множителя, имеем:

Значит, (a+b)·(ab+1)  4ab, при а0, b0, что и требовалось доказать.

4. Докажем: 

Доказательство: Допустим, что данное неравенство верно.

Получили очевидное неравенство.

Значит, данное неравенство  верно.

Во Мы можем привести доказательство данного неравенства из очевидного неравенства (a+b-2)2  0?

ответ: Да, для этого сделаем обратные шаги (рассказать по готовой записи)

Объяснение:

как то так, неуверен

4,5(81 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ