1)Решение системы уравнений х=1
у=2
3)Решение системы уравнений х=1
у=1
5)Решение системы уравнений х=1
у=2
7)Решение системы уравнений х= -1
у=1
Объяснение:
1)2х+у=4
3х-2у= -1
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=4-2х
3х-2(4-2х)= -1
3х-8+4х= -1
7х= -1+8
7х=7
х=1
у=4-2х
у=4-2*1
у=2
Решение системы уравнений х=1
у=2
3)3х+у=4
5х+3у=8
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=4-3х
5х+3(4-3х)=8
5х+12-9х=8
-4х=8-12
-4х= -4
х=1
у=4-3х
у=4-3*1
у=1
Решение системы уравнений х=1
у=1
5)3х-у=1
2х+3у=8
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=1-3х
у=3х-1
2х+3(3х-1)=8
2х+9х-3=8
11х=8+3
11х=11
х=1
у=3х-1
у=3*1-1
у=2
Решение системы уравнений х=1
у=2
7)3х+2у= -1
2х-у= -3
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
-у= -3-2х
у=3+2х
3х+2(3+2х)= -1
3х+6+4х= -1
7х= -1-6
7х= -7
х= -1
у=3+2х
у=3+2*(-1)
у=3-2
у=1
Решение системы уравнений х= -1
у=1
Объяснение: 1) Р=28, т.к. в четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. 2) Центр оружности, описан около прямоуг треуг лежит на середине гипотенузы ⇒ гипотенуза с= 6,5·2=13, катет а=5, значит по т. Пифагора катет b=√(13²-5²) =√144=12. Тогда периметр Р = 13+5+12=32 . Площадь S= 5·12/2=30 3) Пусть ∠А=46°, ∠С=74°⇒∠В=180°-(74°+46°)=60°. Ула треугольника вписанные, значит они равны половине дуги, на которую опираются, ⇒ дуга ВС=46·2=92°, дуга АС=60°·2=120°, дуга АВ= 74°·2= 148° 4) S=1/2·d₁d₂=60·80/2= 2400 Cторона ромба по т. Пифагора а= 50 см⇒радиус r=S : 2а= 2400 : 100=24 см
значит b1=a1-5; b2=a2-4=10-4=6;b3=a3
b2/b1=b3/b2=q; d=10-a1
(a1-5)/6=6/(a1+2d)=6/(a1+2(10-a1))=6/(20-a1)
(a1-5)/6=6/(20-a1)
(a1-5)(20-a1)=36
-a1^2+25a1-136=0
D=625-544=81
a1=(-25+9)/(-2)=-16/(-2)=8; a1`=(-25-9)/(-2)=17
d=a2-a1=10-8=2; a3=10+2=12 d`=a2-a1`=10-17=-7; a3`=a2=d=10-7=3
ответ (8;10;12) и (17;10;3)