1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 9). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
9 = √а
(9)² = (√а)²
81 = а
а=81;
б) Если х∈[0; 9], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√9=3;
При х∈ [0; 9] у∈ [0; 3].
в) y∈ [4; 121]. Найдите значение аргумента.
4 = √х
(4)² = (√х)²
х=16;
121 = √х
(121)² = (√х)²
х=14641;
При х∈ [16; 14641] y∈ [4; 121].
г) Найдите при каких х выполняется неравенство у ≤ 3.
у ≤ 3
√х ≤ 3
(√х)² ≤ (3)²
х ≤ 9;
Неравенство у ≤ 3 выполняется при х ≤ 9.
Объяснение:
(5^5/5^3)*5 + (6^4*6^7)/6^10=125+6=131