1) f(x)=7x-14, [0;4]
производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
f(-5) =-5/(-5)=1- наименьшее значение.
Объяснение:
Для простого решения систем уравнений используют сложения уравнений.
1)
10х+2у=12 (1)
-5х+4у=- 6. (2).
Умножим второе уравнение на два ,получим:
-10х+8у=-12.
Вот теперь удобно сложить эти два уравнения.
10х+2у=12
-10х+8у=- 12.
10у=0.
у=0. ; х=(12-2*0)/10=12/10=1,2. это находим из первого уравнения.
Надеюсь, ты понял(а), как решаются такие системы уравнений методом сложения или вычитания.
Остальное попробуй сама решить. Не получится , напиши.
3х-2у=1
12х+7у=-26.
Умножим (1) на (-4).
-12х+8у=-4
12х+7у=-26.
сложим.
15у=-30.
у=-2.
х={1+2(-2)}/3=(1-4)/3=-1.
2) 6.25-1 1/4=6.25-1.25=5