М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
artichdok7p08ovo
artichdok7p08ovo
18.10.2020 04:34 •  Алгебра

При каких значениях x верно равенство x^2−4=

👇
Ответ:
спаркер
спаркер
18.10.2020
X² - 4 = 22x
x² - 22x - 4 = 0
D = (- 22)² - 4 * 1 * (- 4) = 484 + 16 = 500 = (10√5)²
x_{1}= \frac{22+10 \sqrt{5} }{2}= \frac{2(11+5 \sqrt{5}) }{2} =11+5 \sqrt{5} \\\\ x_{2}= \frac{22-10 \sqrt{5} }{2} = \frac{2(11-5 \sqrt{5}) }{2} =11-5 \sqrt{5}
4,5(23 оценок)
Открыть все ответы
Ответ:
marjna167
marjna167
18.10.2020
1). В числителе стоит формула квадратов: (6а-1)^2;
В знаменателе записываем: 6а^2+12а-а-2. Выносим общие множители: 6а(а+2) - (а+2). Дальше: (6а-1)*(а+2) (почему так? Потому что (а+2) - общая скобка, а 6а и -1 это общие множители этих скобок.);
(6а-1) сократится, будет 6а-1/а+2;
6а - 1/а + 2.
2). -х^2 - 2х + 8 》0;
D = 4 - 4*(-1)*8 = 4 + 32 = 36;
x1 = 2; x2 = -4.
Ветви параболы направлены вниз. Без чертежа неравенство не имеет смысла! Функция больше 0 => всё, что выше и есть решения неравенства.
ответ: [-4;2] или -4《 х 《 2.
1. сократить дробь: 36а²-12а+1 6а²+11а-2 2. решить неравенство: -х²-2х+8≥0
4,6(40 оценок)
Ответ:
zajigalka2001
zajigalka2001
18.10.2020

ответ:5

Объяснение:

Покажем, что Петино множество не может содержать больше, чем 5 элементов. От противного: пусть множество содержит не менее 6 элементов. Упорядочим эти элементы по неубыванию модулей:

 |a1|≤|a2|≤...≤|a6|.

Отметим, что среди элементов a2, a3… a6 не может встретиться 0.

Для любой четвёрки a, b, c, d,, являющейся выборкой из элементов a2, a3… a6, справедливо неравенство

abcd≤a41.

При этом, так как среди элементов a2, a3… a6 существует не более одного, совпадающего с a1 по модулю, мы получаем

 a41<|abcd|.

Выберем четвёрку a, b, c, d, так, чтобы abcd=|abcd|.

 Если среди элементов a2, a3… a6 нет отрицательных, то в качестве a, b, c, d, подойдут любые из этих элементов. Если среди элементов a2, a3… a6 есть ровно 1 отрицательный, то в качестве a, b, c, d, подойдут оставшиеся положительные элементы. Если среди элементов a2, a3… a6 есть ровно 2 или 3 отрицательных, то в качестве a, b, c, d, подойдут 2 отрицательных и 2 положительных элемента. Если же среди элементов a2, a3… a6 существует не менее 4 отрицательных, то в качестве a, b, c, d, подойдут любые 4 отрицательных элемента из a2, a3… a6.

Таким образом, мы нашли такие a, b, c, d,, для которых выполняется равенство abcd=|abcd|.

Но тогда abcd<a41<|abcd|=abcd.

Тем самым мы получили противоречие. Значит, Петино множество состоит не более, чем из 5 целых чисел.

Указанный пример показывает, что Петино множество с 5 элементами существует:

 1, 2, 3, 4, −5.

4,4(33 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ