ответ: решение невозможно, возможно, в задаче есть ошибка, но я написала решение и вы всегда можете заменить данные правильными
Объяснение: Так как получившиеся прямоугольники равны, они резали изначальные прямоугольники одна вдоль, а другая поперёк. Надеюсь, вы уже изучали х и у.
пусть длина изначального прямоугольника 2х, а ширина 2у
тогда если резать вдоль: периметр = 2*2у+ 2*2х\2 = 4у+2х
Если резать поперёк: периметр = 2*2х+ 2*2у\2 = 4х+ 2у
Напоминаю: длина всегда больше ширины, поэтому:
4у+2х=18
2у+ 4х = 39
собираем эти два уравнения в систему, домножаем первое на -1, а второе на 2:
-4у-2х=-18
4у+8х=78
складываем:
6х=60
х=10
НО!
4у+20=18
у=-0,5, а это невозможно
Дано:
а₁ = 11 дм
b₁ = 14 дм
с₁ = 15 дм
P₂ = 110 дм - периметр подобного треугольника
Найти:
а₂, b₂, c₂ - стороны подобного треугольника
Периметр исходного треугольника
Р₁ = а₁ + b₁ + c₁ = 11 + 14 + 15 = 40 (дм)
Отношение периметров подобных треугольников равно коэффициенту подобия k
k = P₂ : P₁ = 110 : 40 = 2.75
Cтороны подобного треугольника
а₂ = k · a₁ = 2.75 · 11 = 30.25 (дм)
b₂ = k · b₁ = 2.75 · 14 = 38.5 (дм)
c₂ = k · c₁ = 2.75 · 15 = 41.25 (дм)
Сторона подобного треугольника равны 30,25дм; 38,5 дм; 41,25 дм
1. Если в произведении двух чисел первый множитель увеличить на 1, а
второй уменьшить на 1, то произведение увеличится на 2011. Как
изменится произведение исходных чисел, если, наоборот, первый
множитель уменьшить на 1, а второй увеличить на 1?
ответ. Уменьшится на 2013.
Решение. Пусть изначально были числа x и y (с произведением xy ). После того как
первый множитель увеличили на 1, а второй уменьшили на 1, получилось
(x 1)( y 1) = xy y x 1.
Произведение увеличилось на 2011, то есть y x 1= 2011 или y x = 2012 . Если же
первый множитель уменьшить на 1, а второй увеличить на 1, получится
(x 1)( y 1) = xy y x 1.
Заметим, что
xy y x 1= xy ( y x) 1= xy 2012 1= xy 2013 .
То есть произведение уменьшилось на 2013.
2. Даны ненулевые числа x, y и z. Чему может равняться значение выражения
(
||
−
||
) ∙ (
||
−
||
) ∙ (
||
−
||
)
ответ. 0.
Решение. Докажем, что выражение, стоящее по крайней мере в одной из скобок,
равно нулю. Выражение, стоящее в первой скобке, принимает нулевое значение, если
x и y одного знака. Аналогично для второй и третьей скобок. Но среди ненулевых
чисел x, y и z обязательно найдутся либо два положительных числа, либо два
отрицательных. А значит, хотя бы один из трех множителей равен нулю. Поэтому все
произведение равно нулю.
3. Сравнить числа:
9 9 100
1
. . .
5 2 5 3
1
5 1 5 2
1
5 0 5 1
1
и
100
1
. ответ обосновать!
ответ. Числа равны.
Решение. Справедливо равенство
1
1 1
( 1)
1
n n n n
. Применяя его к сумме дробей,
получим
100
1
100
1
5 0
1
100
1
9 9
1
. . .
5 2
1
5 1
1
5 1
1
5 0
1
.
4. Сумма двух положительных чисел и сумма их кубов являются
рациональными числами. Можно ли утверждать, что
а) сами числа рациональны? б) сумма их квадратов рациональна?
ответ. а) Нет. б) Да, можно.
Указание. а) В качестве примера можно взять числа
a 2 1, b 2 1 .
б) Пусть числа
x a b
и
3 3
y a b
рациональны. Тогда
3 ( )
3 3 3
x a b ab a b = y 3x ab.
Отсюда
x
x y
ab
3
3
– рациональное число. Поэтому число
a b (a b) 2ab 2 2 2
также
рационально.