Пусть х км/ч - скорость пешехода, тогда (х-2) км/ч - скорость туриста Пусть у ч - время туриста, тогда (у - 0,5) ч - время пешехода. По условию ясно, что пешеход км, а турист соответственно км. Составим уравнения: 12/(х-2) - это время туриста, 15/х - это время пешехода. Составим систему уравнений: у = 12/(х-2) у-0,5 = 15/х Подставим первое во второе, получим: 12/(х-2) - 0,5 = 15/х Перенесем: 12/(х-2) - 15/х = 0,5 под общий знаменатель: (12х - 15х + 30) / х (х-2) = 0,5 30 - 3х = 0,5х (2) - х х (2) - это х в квадрате -3х - 0,5х (2) + х + 30 = 0 -0,5х (2) - 2х + 30 = 0 0,5х (2) + 2х - 30 = 0 х (2) + 4х - 60 = 0 Д = 16 + 4*60 = 256 корень из Д = 16 х первый = (-4 + 16) / 2 = 6 км/ч х второй = (-4-16)/2 = -10 - не подходит, т. к. отрицательный Значит скорость пешехода х = 6
Для начала cоставим систему уравнений: у = 12/(х-2) у-0,5 = 15/х Подставим первое во второе, получим: 12/(х-2) - 0,5 = 15/х Перенесем: 12/(х-2) - 15/х = 0,5 под общий знаменатель: (12х - 15х + 30) / х (х-2) = 0,5 30 - 3х = 0,5х (2) - х х (2) - это х в квадрате -3х - 0,5х (2) + х + 30 = 0 -0,5х (2) - 2х + 30 = 0 0,5х (2) + 2х - 30 = 0 х (2) + 4х - 60 = 0 D = 16 + 4*60 = 256 корень из D = 16 х первый = (-4 + 16) / 2 = 6 км/ч х второй = (-4-16)/2 = -10 - не подходит, т. к. отрицательный Значит скорость пешехода х = 6 км/ч скорость туриста = 6-2 = 4 км/ч
1)n=1
7*7^2+2*4^1=343+8=351=3*117 верно, кратно 3
2)допустим, что верно при n=k
7*7^(2k)+2*4^k кратно 3
3)докажем, что верно при n=k+1
7*7^(2k+2)+2*4^(k+1)=
=7*7^(2k)*7^2+2*4^k*4=
=7*7^(2k)*(1+48)+2*4^k*(3+1)=
=7*7^(2k)+48*7*7^(2k)+2*4^k+2*4^k*3=
=(7*7^(2k)+2*4^k)+(3*16*7*7^(2k))+(3*2*4^k)
кратно 3 кратно 3 кратно 3 (один из множителей равен 3)
выражение в каждой из скобок кратно 3