М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kiraalexeyeva
kiraalexeyeva
24.01.2022 12:09 •  Алгебра

«выражения а) (6a-3)(a+1)-3a(2a-3) б) 36x(x++1)^2 в) 4(c-3)^2-(2c-7)(7+2c)

👇
Ответ:
Fizruk115
Fizruk115
24.01.2022
А)(6a-3)(a+1)-3a(2a-3)
6a²+6a-3a-3-6a²+9a
12a-3
б)36x(x+2)-(6x+1)²
36x²+72x-36x²+12x+1
84x+1
в)4(c-3)²-(2c-7)(7+2c)
4(c-3)²-(2c-7)(2c+7)
4*c²-6c+9-4c²-49
4c²-6c+9-4c²-49
-6c-40
4,5(34 оценок)
Открыть все ответы
Ответ:
dannovchern
dannovchern
24.01.2022

Решение на фото.

Объяснение:

Комментарий ко 2-му примеру: корни уравнения - точки пересечения графика параболы с осью OX. Если таких точек нет - график не пересекает эту ось, а значит всегда находится сверху (учитывая, что ветви параболы направлены вверх в данном случае).

Комментарий к 3-му примеру: Разделим выражение на -1, получим:

x²-10x+25 = 0. Слева - формула сокращённого умножения, а именно - квадрат разности. Он сворачивается до выражения " (x-5)² = 0 ". Если выражение в квадрате равно нулю, то и простое выражение тоже равно нулю, значит:

x - 5 = 0, откуда x = 5.


1. Решите неравенства. 1) х2+3х+2 ≤ 0; 2) х2+4х+10 ≥ 0; 3) -х2+10х-25  0; 4) -х2+4 < 0; 2. Пр
4,7(52 оценок)
Ответ:
YTTeamGardnYT
YTTeamGardnYT
24.01.2022
А)y`=dy/dx
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC  и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1)  - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2

y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2) 
или
y²=ln((eˣ+1)²·e/4) - частное решение 

b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
 
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|  
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
 
4,6(62 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ