1) В таблицах значений.
2)Да, проходит.
Объяснение:
1) Построить график функции y = -3x + 6.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = -3x + 6
Таблица:
х -1 0 1
у 9 6 3
2) Выяснить, проходит ли график функции через точку M(-20; 66)
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
M(-20; 66) y = -3x + 6
66= -3*(-20)+6
66= 60+6
66=66, проходит.
4 вариант
Объяснение: рисуем числовую прямую и отмечаем точки -5 и 2 (нули неравенства (приравниваем каждую скобку к 0 и находим х, это и есть нули неравенства))
Далее берем точку правее от большего нуля и подставляем в неравенства (например 3). Общий знак неравенства + (первая скобка дает + при подстановке тройки и вторая, а +*+=+)
Потом берем точку посередине наших нулей (например 0) и также подставляем. Общий знак неравенства - ( первая скобка дает +, а вторая -, а +* - = -)
И последней подставляем точку левее меньшего нуля( например -6). Общий знак неравенства + (все по той же логике как было описано выше)
А поскольку неравенство запрашивает значения меньше нуля, то ответом будет промежуток с отрицательным знаком неравенства, то есть вариант 4
(x−3)(x+3)+3x^2 = x^2+x3−3x−9+3x^2=4x^2−9;
2х (х-3)-3(х+2)=2x2−6x−3x−6=2x2−9x−6;
(7а+х)^2=49a2+14ax+x2