При вычислении воспользуйтесь формулами m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c
Решение: а) f(x)=x²-6x+4; В приведенном уравнение b =-6, a=1 m=x=-b/2a =-(-6)/(2*1)=6/2=3 n=y(3)=3²-6*3+4=9-18+4=-5 Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5
б) f(x)=-x²-4x+1 В приведенном уравнение b =-4, a=-1 m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2 n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5 Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5
в)f(x)=3x²-12x+2
В приведенном уравнение b =-12, a=3 m=x=-b/2a =-(-12)/(2*3)=12/6= 2 n=y(2)=3*2²-12*2+2=12-24+2= -10 Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).