М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vovadj17
vovadj17
20.07.2022 16:10 •  Алгебра

Первый член арифметической прогрессии равен -8, а разнось равна 2. найдите сороковой член прогрессии

👇
Ответ:
artemkatopchik
artemkatopchik
20.07.2022
A1=-8;  d=2;
a40=?
an=a1+d(n-1);
a40=-8+2(40-1)=-8+2*39=-8+78=70
4,5(20 оценок)
Открыть все ответы
Ответ:
L00KING
L00KING
20.07.2022

   2015 год - не високосный. значит в феврале 28 дней.

         Всего в зимние месяцы, декабрь 31 , янваарь 31 и февраль 28 - 90 дней.

     если принять 90 дней в году, как выборку, тогда у нас есть 2 варианты: 29 дней, когда шел снег и 90-29=61 день - без осадков.

Сумма вариант всегда равна числу выборки: 29+61=90

Сумма относительных частот всегода = 1 или 100%

Обозначим: n=90

                      m₁=29

                       m₂=61

Относительная частота(W) - это отношение варианты к выборке: W=m/n

29/90=0.3(2)≈32%

100%-32%=68%

Проверка: 61/90=0.6(7)≈68%

                    1-0.6(7)=0.3(2)

ответ: Относительная частота дней без осадков = 68%

4,4(51 оценок)
Ответ:
Summerween
Summerween
20.07.2022

Объяснение:

y=8-\frac{4x}{x^2}-2x

На 0 делить нельзя. Область определения: (-∞;0)∪(0;∞)

\lim_{x \to +0} (8-\frac{4x}{x^2}-2x)=-\infty \\ \lim_{x \to -0} (8-\frac{4x}{x^2}-2x)=\infty

Т.к х не равен 0, то точек пересечения с осью у нет. Находим точки пересечения с осью х.

8-\frac{4x}{x^2}-2x=8-\frac{4}{x}-2x=\frac{8x-4-2x^2}{x}\\ \frac{8x-4-2x^2}{x}=0\\8x-4-2x^2=0\\x^2-4x+2=0

Решаем квадратное уравнение, находим точки пересечения с осью х:

x_1=2-\sqrt{2} \\x_2=2+\sqrt{2}

Находим точки экстремума (производная равна нулю).

(8-\frac{4x}{x^2}-2x)'=(8-\frac{4}{x}-2x)'=\frac{4}{x^2}-2;\\ \frac{4}{x^2}-2=0\\ \frac{2}{x^2}=1\\x=\pm \sqrt{2};\ \ y(-\sqrt{2})=8+4\sqrt{2};\ \ y(2)=8-4\sqrt{2}

Для нахождения точек перегиба находим вторую производную

y''=(\frac{4}{x^2}-2)'= (4x^{-2}-2)'=-\frac{8}{x^3}

Вторая производная нигде не равна нулю, точек перегиба нет.

Горизонтальных асимптот нет. Вертикальная асимптота одна: х=0.

Ищем наклонную асимптоту:

k= \lim_{x \to \pm \infty} \frac{f(x)}{x}= \lim_{x \to \pm \infty} (\frac{8}{x}-\frac{4}{x^2}-2 )=-2

b= \lim_{x \to \pm \infty} (f(x)}-k{x})= \lim_{x \to \pm \infty} (8-\frac{4}{x}-2x+2x )=8

Наклонная асимптота есть:

y=-2x+8

Дальнейшее исследование проводим, заполняя таблицу (см. рис.1).


Постройте график функции: y=8-4x/x^2-2x.
4,4(23 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ