Все в объяснениях.
Объяснение:
1. Постройте график функции y=f(x).
Гипербола, полученная сдвигом графика у= на 1 вверх по оу. у(-2)=0,5 ;у(-1)=1 ;у(-2)=0,5 ;у(2)=-0,5 ;у(1)=-1 ;у(2)=-0,5
2. f '(x)= ( ) ' =
.
3. Уравнения касательной y =к (x −x₀)+f (x₀) .
Прямая y= , к=1\4.
Найдем точку касания
(x-2)²=0 , x=2.
f (2)=-1\2+1=0,5
y =0,25* (x −2)+0,5
у=0,25х
Вторая касательная пройдет через х=-2
f (-2)=1\2+1=1,5
y =0,25* (x −2)+1,5
у=0,25х+1
4. Наименьшее значение функции у'=(x−f(x) ) '=(х)' =
=1 -=
.
у'=0 , ,х=1 , х=-1.
На промежутке [1/2;∞) лежит только х=1
у'______[1\2] - - - - -(1)+ + + + +
y ↓ ↑
x=1 точка минимума.
Наименьшее значение может быть при х=1\2 или х=1:
у(1\2) = .
у(1)= 1+1-1=1.
Наименьшее значение функции х-f(x) равно -0,5
9x + 8x² = -1
8x² + 9x + 1 = 0
D = 81 - 32 = 49
x1 = (-9+7)/16 = -0,125
x2 = (-9-7)/16= -1
ответ: -1; -0,125
3 + 3x² = 4x
3x² - 4x + 3 = 0
D = 16 - 36 = - 20 => D < 0 => нет корней
ответ: нет корней
25 - 10x + x² =0
D = 100 - 100 = 0
x = 10/2 = 5
ответ: 5
4x - 4x² = 0
x(4 - 4x) = 0
1)x = 0
2)4 - 4x = 0
4x = 4
x = 1
ответ: 0; 1.
3x² - 12 = 0
3x² = 12
x² = 12/3 = 4
x = ±2
ответ: ±2
9x² + 8 = 18x
9x² - 18x + 8 = 0
D = 324 - 288 = 36
x1 = (18+6)/18 = 24/18 = 1 1/3 (одна целая одна третья)
x2 = (18-6)/18 = 12/18 = 2/3
ответ: 2/3; 1 1/3
c² + c = 6
c² + c - 6 = 0
D = 1 + 24 = 25
x1 = (-1+5)/2 = 2
x2 = (-1-5)/2 = -3
ответ: -3; 2