Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 38.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=38
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=38
2n+1+2n+5=38
4n=32
n=8
8; 9 и 10; 11
(11²-10²)+(9²-8²)=21+17
21+17=38 - верно
f(1)=a+b+c>0 по условию. (1)
т.к. функция не имеет корней, то f(x)>0 либо f(x)<0 для всех х.
Учитывая (1) имеем f(x)>0 для все х. a>0
b^2-4ac<0 b^2>0 значит и ac>0.
т.е. a и с имеют одинаковые знаки. c>0
a+b+c>0
4ac-b^2>0
сложим неравенства
a+b+c+4ac-b^2>0
c(1+4a)>b^2-a-b
c>(b^2-b-a)/(1+4a)
положим a=const тогда числитель минимален при в=1/2
и равен -1/4-a=-(1+4a)/4
c>-1/4. Выше мы выяснил и что c>0. нас интересует целое
значение ближайшее с=1.
ответ с=1
Пример a=1 c=1 b=1
a+b+c=3>0 b^2-4ac=-3<0