1) y=x2-4x+3 - ветви направлены вверх
х=)/2*1=4/2=2
у=2*2-4*2+3=4-8+3=-1
(2, -1) - координаты вершины параболы
2)y=-x2-12x+1 - верви направлены вниз
х=)/2*(-1)=12/(-2)=-6
у=-6*(-6)-12*(-6)+1=-36+72+1=37
(-6, 37) - координаты вершины параболы
3)y=x2-10x+15 - верви направлены вверх
х=)/2*1=10/2=5
у=5*5-10*5+15=25-50+15=-10
(5, -10) - координаты вершины параболы
4)y=x2-7x+32.5 - верви направлены вверх
х=)/2*1=7/2=3,5
у=3,5*3,5-7*3,5+32,5=12,25-24,5+32,5=20,25
(3,5 ; 20,25) - координаты вершины параболы
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
(90*100)(9*1)=900*9=8100