БЫЛО ДВА СОСУДА: Пусть изначально было процентное содержание яблочного сока в первом сосуде - Х %, а во втором - Y %.
1 сосуд 2 сосуд
объем смеси ( л) 1 2
содерж. сока (%) X Y
объем сока в смеси( л) 0,01X 0,02 Y
ИЗ СОДЕРЖИМОГО 1 и 2 СОСУДОВ ПРИГОТОВИЛИ:
1 смесь 2 смесь
объем смеси ( л) 0,5 2,5
содерж. сока (%) 40 88
объем сока в смеси( л) 0,5*0,4 =0,2 2,5*0,88 = 2,2
0,01X + 0,02 Y = 0,2 + 2,2 0,01X + 0,02 Y = 2,4 X + 2 Y = 240 из уравнения следует, что Х не может быть меньше 40, иначе 2 Y будет больше 200 => Y будет больше 100 %, но этого не может быть, т.к. максимальное содержание сока в смеси - 100%. С другой стороны изначально хотя бы в одном сосуде процентное содержание яблочного сока не может превышать 40%. Если бы в обоих сосудах процентное содержание яблочного сока было больше 40%, то мы не получим из них 40-процентную смесь смесь. Пусть в первом сосуде находилась 40% смесь сока, тогда 40 + 2 Y = 240 2 Y = 200 Y = 100
Если во втором сосуде находилась 40% смесь сока, тогда X + 2 * 40 = 240 X + 80 = 240 X = 240 - 80 X = 160 ( этого не может быть)
ответ: в первом сосуде была 40% смесь сока, во втором - 100% сок.
5. Ширина прямоугольника вдвое меньше его длины. Если ширину увеличить на 3 см, а длину на 2 см, то площадь его увеличится на 78 см2. Найдите длину и ширину прямоугольника.
х см - ширина 2х см - длина
S1 = x*2x= 2x^2 см^2
(x+3) см = новая ширина (2х+2) см - новая длина S2 = (x+3)*(2x+2)
2х-5у=-7 х=-5+3*3=4
х=-5+3у
2(-5+3у)-5у+7=0
-10+6у-5у+7=0
-3+у=0
у=3
ответ:х=4 у=3
сложения
2х-5у=-7
х-3у=-5( умножим обе части на( -2)) 2х-15=-7
Получим 2х=-7+15
2х-5у=-7 2х=8
+ х=4
-2х+6у=10
у=3 ответ:х=4 у=3