Прологарифмируем неравенство по основанию 2; смысл неравенства при этом сохранится (поскольку 2>1⇒ логарифмическая функция возрастает, поэтому большему значению функции соответствует большее значение аргумента). Воспользуемся сразу свойствами логарифмов: логарифм произведения равен сумме логарифмов, при логарифмировании степени показатель выносится перед знаком логарифма (конечно, так можно делать, если все выражения имеют смысл):
(суть метода интервалов: наносим на числовой прямой нули числителя и знаменателя и выбираем нужные промежутки, например, как чаще всего заставляют делать в школе, подставляя в неравенство по одному числу из каждого промежетка (но надо сказать, что это самый дебильный из возможных
Пусть х км проехал до точки встречи один из велосипедистов, тогда другой велосипедист до точки встречи успел проехать (50 - х) км. Скорость одного велосипедиста х/2 км/ч, скорость другого - (50-х)/2 км/ч. Время, затраченное одним велосипедистом на весь путь часов, другим велосипедистом - ч. Разница во времени часа. Составляем уравнение по условию задачи: После преобразований останется уравнение . Корни уравнения 150 и 20. Первый корень не подходит, т.к. превышает расстояние между селами. Скорости: одного велосипедиста 20 : 2 = 10 км/ч, другого (50 - 20) : 2 = 15 км/ч.
9x+x=180
10x=180
x=180/10
x=18
2) 8-x/9=x/11|*99
792-11x=9x
-11x-9x=-792
-20x=-792
x=-792/(-20)
x=39,6
3) 3-x/7=x/13|*91
273-13x=7x
-13x-7x=-273
-20x=-273
x=-273/(-20)
x=13,65
4) 11+x/3=x+2|*3
33+x=3x+6
x-3x=6-33
-2x=-27
x=-27/(-2)
x=13,5