Пусть х дм - длина одного катета, тогда
(23+х) дм - длина другого катета.
37 дм - гипотенуза
ОДЗ: 0<x<37
Согласно теореме Пифагора для прямоугольного треугольника сумма квадратов катетов равна квадрату гипотенузы, получаем уравнение:
x² + (23+x)² = 37²
x² + 529 + 46x + x² = 1369
2x²+46x+529-1369 = 0
2x²+46x-840 = 0 |:2
x²+23x-420 = 0
D = 23² - 4·1·(-420) = 529+1680 = 2209 = 47²
x₁ = (-23-47)/2 = -60/2 = - 30 < 0 не удовлетворяет ОДЗ.
x₂ = (-23+47)/2 = 24/2 = 12 удовлетворяет ОДЗ.
Получаем:
12 дм - длина одного катета;
23+12 =35 дм - длина другого катета;
37 дм - гипотенуза
Найдем периметр прямоугольного треугольника:
12 + 35 + 37 = 84 (дм)
ответ: 84 дм
1) ищем производную
2) приравниваем её к нулю, решаем получившееся уравнение
3) смотрим: какие корни попали в указанный промежуток
4) вычисляем значения данной функции в этих корнях и на концах промежутка.
5) пишем ответ
начали?
1) y' = 2Сosx + 24/π
2) 2Сosx + 24/π = 0
2Сosx -= - 24/π
Сosx = - 12/π
нет решений
3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение.
4) а) х = -5π/6
у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13
б) х = 0
у = 0+0 +6 = 6
ответ: max y = 0