Чтобы упростить выражение (а + 5)(а - 2) + (а - 4)(а + 6) вспомним как умножить скобку на скобку.
Правило умножения скобки на скобку звучит так: чтобы умножить одну сумму на другую, надо каждое слагаемое первой суммы умножить на каждое слагаемое второй суммы и сложить полученные произведения.
(а + 5)(а - 2) + (а - 4)(а + 6) = a * a - 2 * a + 5 * a - 2 * 5 + a * a + 6 * a - 4 * a - 4 * 6 = a^2 - 2a + 5a - 10 + a^2 + 6a - 4a - 24.
Сгруппируем и приведем подобные слагаемые:
a^2 + a^2 - 2a + 5a + 6a - 4a - 10 - 24 = 2a^2 + 5a - 34.
ответ: 2a^2 + 5a - 34.
Объяснение:
Так как последняя цифра четна и число кратно 5 , то она равна нулю , а само число кратно 70 , запишем его в виде : A = 49000 +100x +10y , где x и y - число сотен и десятков числа А , х≠0 , так как двух нулей быть не должно , 49000 кратно 70 ⇒ 100х+10y также кратно 70 ( оно равно А -49000) и должно быть наименьшим , рассмотрим трехзначные числа, кратные 70 -140 , 210 , 280 , 350 и т .д., наименьшее число из этой последовательности с различными четными цифрами равно 280 ⇒ А =49280
ответ :49280
Функция f(x)=arcsin6x является сложной функцией, поэтому при вычислении производной необходимо использовать и следующую формулу:
(f(g(x)))′=f′(g(x))⋅g′(x)
где g(x)=6x.
1. Сначало найдём производную:
f′(x)=(arcsin6x)′=arcsin′6x⋅(6x)′=11−(6x)2−−−−−−−−√⋅6=61−36x2−−−−−−−−√.
2. Далее решим неравенство:
(f′(x))2>1
61−36x2−−−−−−√>1Так как1−36x2−−−−−−−−√>0,x∈(−1;1),то6>1−36x2−−−−−−−−√И{1−36x2<361−36x2>0