Воспользуемся формулой разности кубов:
Выносим за скобки общий множитель:
Уравнение распадается на два. Решаем первое:
Почленно разделим на :
Решаем второе уравнение:
Заметим в левой части основное тригонометрическое тождество:
Обе части уравнения домножим на 2:
Чтобы в левой части применить формулу синуса двойного угла:
Но так как синус любого угла принимает значения только из отрезка от -1 до 1, то последнее уравнение не имеет решение.
Значит, никаких других корней, кроме найденных ранее, исходное уравнение не имеет.
ответ:
1.
Если , то
. Но внести под знак корня мы можем только неотрицательный множитель. Тогда, преобразуем следующим образом:
2.
Аналогично, необходимо рассмотреть два случая:
3.
Уточнение. Если условие относится и к двум последним примерам тоже, то для второго примера оно не никак. А для третьего примера на основе него можно сделать вывод, что множитель перед корнем больше числа, стоящего под знаком корня. Но поскольку под корнем стоит заведомо неотрицательное число, то и множитель перед корнем также неотрицателен. Тогда однозначно
.
1) 5х - 24у = а
Начало координат (0; 0)
5·0 - 24·0 = а
0 = а
ответ: при а = 0 график проходит через начало координат.
2) 3х + 4у = а + 2
Начало координат (0; 0)
х = 0, у = 0
3·0 + 4·0 = а + 2
0 = а + 2
а = - 2
ответ: при а = -2 график проходит через начало координат.