ищем определитель через разложение по 1-му столбцу:
2 1 -1
Δ₁₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₁₁ = 2*((-1)*2-1*3)-2*(1*2-1*(-1))+0*(1*3-(-1)*(-1)) = -16
минор для (2,1):
-1 0 3
Δ₂₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₂₁ = (-1)*((-1)*2-1*3)-2*(0*2-1*3)+0*(0*3-(-1)*3) = 11
минор для (3,1):
-1 0 3
∆₃₁ = 2 1 -1
0 1 2
определитель для этого минора.
∆3,1 = (-1)*(1*2-1*(-1))-2*(0*2-1*3)+0*(0*(-1)-1*3) = 3
минор для (4,1):
-1 0 3
Δ₄₁ = 2 1 -1
2 -1 3
определитель для этого минора.
∆₄₁ = (-1)*(1*3-(-1)*(-1))-2*(0*3-(-1)*3)+2*(0*(-1)-1*3) = -14
определитель матрицы
∆ = (-1)⁽¹⁺¹⁾ *1*(-16) + (-1)⁽²⁺¹⁾ *3*11 + (-1)⁽³⁺¹⁾ *1*3 + (-1)⁽⁴⁺¹⁾ *4*(-14) = 10
Воспользуемся формулой :
Возведем обе части в квадрат:
Рассмотрим 3 случая :
1.
----------------------
Мы знаем, что любое число(кроме 0) в любой степени больше нуля, то есть 2+а > 0 => a>-2
Так же 2-а уже должно быть меньше или равно нулю:
2-a ≤ 0 => a ≥ 2
Найдем пересечение => a ≥ 2
2.
По тому же принципу :
Найдем пересечение => a ≤-2
3.
----------------------------------------------------------------------
Объединим три ответа => a Є (-∞ ; -2] U [2 ; +∞)
ответ : a Є (-∞ ; -2] U [2 ; +∞) U {0}
P.S это одно из возможных решений, возможно вы найдете и по проще)
2sin(3п-x)-3 sin(п/2-x)=0
2sinx - 3cosx = 0 делим на cosx ≠ 0
2tgx - 3 = 0
tgx = 3/2
x = arctg(3/2) + πk, k ∈ Z