Дополняем вопрос недостающими буквами - В. РЕШЕНИЕ 1. Всего событий - n. N(A) = 8 - благоприятных для А - дано. N(B) = n - N(A) = 17 - 8 = 9 - благоприятных для В - ОТВЕТ р(А) = 0,32 - вероятность А - дано. р(В) = 1 - 0,32 = 0,68 - вероятность события В - ОТВЕТ 2. Всего вариантов на кости - граней - n =6. Событие А - выпало четное - A={2,4,6} - m(А) = 3 Событие В - больше 3 - B={4,5,6} - m(B) = 3 Событие АВ - пересечение множеств А∩В = {4;6} - m(AB) = 2. Вероятность АВ по классической формуле p(AB) = m(AB)/n = 2/6 = 1/3 - вероятность - ОТВЕТ (≈33,3%) 3. Всего для каждого броска вариантов - n = 6. Событий А - меньше 3 - A={1,2} - m(A) = 2, p(A) = 2/6 = 1/3 Событие В - больше 4 - B={5,6} - m(B) = 2, p(B) = 2/6 = 1/3 Элементарные события: 1,5 и 1,6 и 2,5 и 2,6 - четыре варианта. Событие А*В - "И" А "И" В - произведение вероятностей каждого. p(A*B) = 1/3 * 1/3 = 1/9 - вероятность - ОТВЕТ (≈11,1%) ИЛИ Для двух бросков = n = 6² = 36, m(AB) = 4, p(A*B) = 4/36 = 1/9 - ОТВЕТ 4. Вероятность несовместных событий ("ИЛИ") равна сумме вероятностей каждого - называется "ИЛИ" U "ИЛИ" V. Р(U+V) = р(U)+р(V) = 0,3 + 0,5 = 0,8 - вероятность - ОТВЕТ
Пусть количество белых шариков равно Б, черных - Ч. Ясно, что хотя бы одно из этих чисел больше или равно 2, поскольку речь идет о двух одноцветных шариках. При этом минимальное количество шариков, которые нужно вынуть, чтобы получить 2 одноцветных, равно 3 (первые 2 могут быть разноцветными, третий совпадет с одним из первых двух). С другой стороны, чтобы гарантировано получить 2 разноцветных шарика, нужно взять max(Б,Ч) +1 шарик. Значит,
max(Б,Ч)+1=3, max(Б,Ч)=2.
Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.
-3x=2-1+5
-3x=6
x=-2
2)8x-6=3x+2
8x-3x=2+6
5x=8
x=1,6