1) (MF) ⃗ имеет координаты (-7;1;-10) |MF|= 2) (АF) ⃗ имеет координаты (5;3;0) (MВ) ⃗имеет координаты (-11;-4;-11) 3) X т. С = (-5-4)/2=-4,5 У т. С = (5+3)/2=4 Z т. С = )1+0)/2=0,5 С (-4,5;4;0,5)
1)Функция определена при тех х, при которых не обращается в 0 знаменатель. Решая уравнение arcsin(x²-3)=0, находим x²-3=0. Решая уравнение x²-3=0, находим x=+-√3. С другой стороны, должно выполняться неравенство -1≤x²-3≤1, или 2≤x²≤4, откуда √2≤x≤2. либо -2≤x≤-√2. Окончательно находим, что область определения состоит из четырёх интервалов: -2≤x<-√3, -√3<x≤-√2, √2≤x<√3,√3<x≤2 2. Так как числитель дроби есть 1, то в нуль функция не обращается. А так как знаменатель дроби принимает любые значения, то область значений функции есть два интервала: -∞<G(x)<0 и 0<G(x)<+∞ То есть функция принимает любые значения, кроме 0.
1)Функция определена при тех х, при которых не обращается в 0 знаменатель. Решая уравнение arcsin(x²-3)=0, находим x²-3=0. Решая уравнение x²-3=0, находим x=+-√3. С другой стороны, должно выполняться неравенство -1≤x²-3≤1, или 2≤x²≤4, откуда √2≤x≤2. либо -2≤x≤-√2. Окончательно находим, что область определения состоит из четырёх интервалов: -2≤x<-√3, -√3<x≤-√2, √2≤x<√3,√3<x≤2 2. Так как числитель дроби есть 1, то в нуль функция не обращается. А так как знаменатель дроби принимает любые значения, то область значений функции есть два интервала: -∞<G(x)<0 и 0<G(x)<+∞ То есть функция принимает любые значения, кроме 0.
|MF|=
2) (АF) ⃗ имеет координаты (5;3;0)
(MВ) ⃗имеет координаты (-11;-4;-11)
3) X т. С = (-5-4)/2=-4,5
У т. С = (5+3)/2=4
Z т. С = )1+0)/2=0,5
С (-4,5;4;0,5)