По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4) 


А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)

___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 
ответ: 3
Объяснение: Для простоты работайте по действиям.
1. Упростите выражение в скобках:
Сначала в знаменателях дробей внутри скобок вынесите общий множитель "а", получите знаменатели в 1-ой дроби а(а+3в), а во второй дроби а(а-3в); приведите эти две дроби к общему знаменателю, домножив 1-ю дробь на (а-3в),а 2-ю на (а+3в).
Получите одну дробь со знаменателем а(а²-9в²), а в числителе -
(а-3в)² - (а+3в)²,раскройте в числителе скобки и приведите подобные слагаемые, получим числитель дроби -12ав,а в знаменателе замените а(а²-9в²) на -а(9в²-а²) для того, чтобы позже легче сократить овую дробь.
2) Полученный ответ надо разделить на следующую дробь или умножить на обратную. После сокращения получите -12ав/-4ав = 3.