Обозначим скорости а и b. Скорость их сближения а+b Они встретились через 30/(a+b) часов после начала. Пешеход А истратил 30/а ч. Пешеход В истратил 30/b ч. 30/a=30/(a+b)+4,5 30/b=30/(a+b)+2 Избавляемся от дробей 60(a+b)=60a+9a(a+b) 30(a+b)=30b+2b(a+b) Раскрываем скобки и упрощаем 20a+20b=20a+3a^2+3ab 15a+15b=15b+b^2+ab Упрощаем 20b=3a^2+3ab 15a=b^2+ab Из 2 уравнения a(15-b)=b^2; a=b^2/(15-b) Нетрудно подобрать такое b, чтобы а было целым. b=6; a=6^2/(15-6)=36/9=4. Подставляем в 1 уравнение 20*6=3*4^2+3*4*6 120=3*16+3*24=3*(16+24)=3*40 Все правильно. ответ: А=6; В=4
Х²+8х+18=х²+2*4х+4²+2=(х+4)²+2 Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х. Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2. Итак, найдем х, при котором выражение принимает наименьшее значение: (х+4)²=0 х+4=0 х=0-4 х=-4 - при таком значении х значение будет наименьшим. ответ: наименьшее значение выражения будет 2 при х=-4.
6y=-x
y= -1/6 *x удобно взять точки x=0 и x= 6
5y=x+1
y=0.2x +0.2 удобные точки x=4 x=9