Рассмотрим обжору (пусть это обжора А), который съел наибольшее количество пирожков. Тогда справа от него сидит обжора, съевший в два раза меньше, т.е. А съел четное количество пирожков. Пусть есть обжора, который съел нечетное количество пирожков. Тогда справа от него сидит обжора, съевший на 6 больше, то есть он тоже съел нечетное количество пирожков. Продолжая подобные рассуждения получим, что все съели нечетное количество пирожков, однако А съел четное. Противоречие. Итак, все съели четное количество пирожков. Значит, общее количество съеденных пирожков тоже четное. Поэтому все пирожки не могли быть съедены. Покажем, что 1 пирожок мог остаться:
Рассмотрим обжору Б. Пусть он съел 2 пирожка. Следующий справа съел 8, следующий съел 4. Тогда в этой тройке всего съедено 14 пирожков. Поставим 7 таких троек друг за другом: (2, 8, 4), (2, 8, 4),...,(2, 8, 4). Всего съедено 14*7=98 пирожков, то есть один остался. Легко видеть, что предъявленная расстановка отвечает требованиям условия.
Итак, наименьшее количество оставшихся пирожков равно 1.
ответ: один-единственный
a²*(a-5)-10a*(a-5)+25/a-5
a³-5a²-10a²+50a+25/a-5
a³-15a²+50a+25/a-5
подставим числа
1,5³-(15*1,5³)+(50*1,5)+25/1.5-5
(3/2)²-(15*(3/2)³)+75+25/-3.5
27/8-(15*27/8)+75+25/-7/2
27/8-405/8+75+25/-7/2
-189/4+100/-7/2
211/4 / -7/2
-211/14
-15 1/14 или ≈-15,07