2. Дискриминант. Если есть уравнение ax^2 + bx + c = 0, то дискриминант вычисляется по формуле D = b^2 - 4ac, и решение (если D>0) имеет вид x = (-b +- sqrt(D))/2a. a = 1, b = -4, c = -30. D = 16 + 120 = 136 = 4 * 34 x = (4 +- sqrt(4 * 34))/2 Можно вынести 4 из под знака корня и сократить на 2: x = (4 +- 2sqrt(34))/2 = 2 +- sqrt(34)
3. Дискриминант/4 Если уравнение имеет вид ax^2 + 2bx + c = 0, то можно вычислить D* = D/4 = b^2 - ac, решение будет выглядеть так: x = (-b +- sqrt(D*))/a D* = 4 + 30 = 34 x = (2 +- sqrt(34))/1 = 2 +- sqrt(34) Последний удобен, если старший коэффициент равен 1 или коэффициент при x чётный.
Пусть х см - одна сторона прямоугольника, у см - другая сторона. Периметр прямоугольника будет 2(х+у)=48. Если одну сторону увеличить в два раза, а другую уменьшить на 6 см, то периметр такого прямоугольника будет 2(2х+(у-6))=64. Решаем ситсему из двух уравнений: 1) 2(х+у)=482) 2 (2х+у-6)=64 Выразим у из перврого уравнения: х+у=24 у=24-х - подставим во второе уравнение: 2(2х+24-х-6)=64 2х+24-х-6=32 х+18=32 х=14 см - длина одной стороны прямоугольника у=24-14=10 см - длина другой стороны прямоугольника