М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dianochkach
Dianochkach
27.05.2020 11:24 •  Алгебра

От пристани а до пристани в против течения реки катер за 12 ч. обратно по течению реки катер за 11 ч. скорость течения реки равна 2 км/ч. найдите собственную скорость катера.

👇
Ответ:
зулик3
зулик3
27.05.2020
Пусть собственная скорость катера V=x км/ч, тогда скорость против течения будет V1=х-2, а по течению V2=х+2 . Расстояние от А до В равно S=V1*t1 или S=V2*t2
12(x-2)=11(x+2)
12x-24=11x+22
x=46 км/ч
4,6(40 оценок)
Открыть все ответы
Ответ:
Арксинус, arcsin

Арксинус ( y = arcsin x )  – это функция, обратная к синусу ( x = sin y ). Он имеет область определения    и множество значений  .
sin(arcsin x) = x     
arcsin(sin x) = x     

Арксинус иногда обозначают так:
.

График функции арксинус 
График функции   y = arcsin x

График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арксинуса.

Арккосинус, arccos

Арккосинус ( y = arccos x )  – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения    и множество значений  .
cos(arccos x) = x     
arccos(cos x) = x     

Арккосинус иногда обозначают так:
.

График функции арккосинус 
График функции   y = arccos x

График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арккосинуса.

Четность

Функция арксинус является нечетной:
arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x

Функция арккосинус не является четной или нечетной:
arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x

Свойства - экстремумы, возрастание, убывание

Основные свойства арксинуса и арккосинуса представлены в таблице.

 y = arcsin xy = arccos xОбласть определения– 1 ≤ x ≤ 1– 1 ≤ x ≤ 1Область значений  Возрастание, убываниемонотонно возрастаетмонотонно убываетМаксимумы    Минимумы    Нули, y = 0x = 0x = 1Точки пересечения с осью ординат, x = 0y = 0y = π/2Таблица арксинусов и арккосинусов

В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.

 xarcsin xarccos xград.рад.град.рад.– 1– 90°– 180°π– – 60°– 150°– – 45°– 135°– – 30°– 120°00°090°30°60°45°45°60°30°190°0°0

 ≈ 0,7071067811865476
 ≈ 0,8660254037844386

ФормулыСм. также:
Вывод формул обратных тригонометрических функций

 
 
 

Формулы суммы и разности

  
     при или 
 
     при и 
  
     при и

  
     при или 
 
     при и 
 
     при и

  
     при  
  
     при 

  
     при  
  
     при 

Выражения через логарифмы, комплексные числаСм. также:
Вывод формул



Выражения через гиперболические функции



Производные

;
.
См. Вывод производных арксинуса и арккосинуса > > >

Производные высших порядков:
,
где  – многочлен степени . Он определяется по формулам:
;
;
.

См. Вывод производных высших порядков арксинуса и арккосинуса > > >

Интегралы

Делаем подстановку   x = sin t   и интегрируем по частям: 
  .

Выразим арккосинус через арксинус: 
  .

Разложения в ряды

При   |x| < 1   имеет место следующее разложение:
 ; 
.

Обратные функции

Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.

Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x      
cos(arccos x) = x    .

Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса: 
arcsin(sin x) = x     при  
arccos(cos x) = x     при .

4,7(96 оценок)
Ответ:

а) y=(x-2) в 4 степени

1)Четная

2)Определена на всей области определения

3)Вершина в точке (2;0) 
4)Ветви направлены вверх. 
5)До x<2 убывает. 
6)При x>4 возрастает.

б)0.5sinx+2

1) Определена на всей области определения

2) Нечетная

3) Периодическая

4) Возрастает и убывает

5) Знакопостоянна на промежутках

6) Непрерывна

7) График называеться синусойдой

 

в)y=0.5cosx+2

1)Определена на всей области определения

2)Четная

3)Периодическая

4)Область значений  отрезок [ 1,5; 2,5]; 
5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ] 

 

Г)y=-(x+2)в 4 степени.

1)Определена на всей области определения

2) Вершина в точке (-2;0)

3)Возростает (-бесконечности;-2);

4)Убывает (-2;+бесконечности);

5)Ветви направлены в низ

6) Область значений (0;-бесконечности)

7) Ость оссимптот: x=-2

8)Наибольшее значение при y=0; x=-2

9) Наименьшего значения не существует

4,7(9 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ