В решении.
Объяснение:
Скорость моторной лодки в стоячей воде 7 км/ч. Время, затраченное на движение лодки на 24 км по течению и на 24 км против течения равно 7 часам. Найти скорость течения реки.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость течения реки.
7 + х - скорость лодки по течению.
7 - х - скорость лодки против течения.
24/(7 + х) - время лодки по течению.
24/(7 - х) - время лодки против течения.
По условию задачи уравнение:
24/(7 + х) + 24/(7 - х) = 7
Умножить все части уравнения на (7 - х)(7 + х), чтобы избавиться от дробного выражения:
24*(7 - х) + 24*(7 + х) = 7*(7 - х)(7 + х)
168 - 24х + 168 + 24х = 343 - 7х²
7х² = 343 - 336
7х² = 7
х² = 1
х = √1
х = 1 (км/час) - скорость течения реки.
Проверка:
24/ 8 + 24/6 = 3 + 4 = 7 (часов), верно.
Обозначим скорость катера по течению за х км/ч. Тогда скорость катера в стоячей воде равна (х-4) км/ч. По реке катер шел 15/x часов, по стоячей воде 4/(x-4) часов.
Имеем уравнение:
15/x+4/(x-4)=1
15*(x-4)+4*x=x*(x-4)
15*x-60+4*x=x^2-4*x
Имеем квадратное уравнение:
x^2-23*x+60=0 Д=(-23)^-4*1*60=289
x1,2=23+-17 РАЗДЕЛИТЬ ВСЕ НА 2
x1=20 (км/час)
x2=3 (км/час) - посторонний корень, скорость катера по течению не может быть меньше скорости течения.
Проверка:
15/20+4/(20-4)=3/4+4/16=3/4+1/4=1 (час), что совпадает с условием задачи
ответ: Скорость катера по течению равна 20 км/x