Пусть число десятков искомого двузначного числа равно а , число единиц равно b,тогда поразрядная запись числа будет 10а+b. Утроенная сумма цифр числа равна 3(a+b). По условию задачи, искомое двузначное число равно утроенной сумме своих цифр, поэтому можно составить уравнение: 10a+b=3(a+b) 10a+b=3a+3b 10a-3a=3b-b 7a=2b b=7a/2 b=3,5a Осталось определить, какие из имеющихся десяти цифр (0,1,2,...,9) подходят под это условие. Только одна пара цифр подойдёт - это a=2, b=7 (b=3,5a=3,5*2=7) Искомое число равно 27 Проверка: 27=3(2+7) 27=3*9 27=27 ответ: 27
Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Объяснение:
удачи)))))))))()(())))))