чертим систему координат, ставим стрелки в положительных направлениях (вверх и вправо), подписываем оси вправо х, вверх - у, отмечаем начало координат - точку О, отмечаем по каждой оси единичный отрезок в 1 клеточку.
Переходим к графикам: у=√х - кривая, проходящая через начало координат - точку О, заполним таблицу: х= 0 1 4 1/4 у= 0 1 2 1/2 Отмечаем точки на плоскости Проводим линию через начало координат и точки , подписываем график у=√х
у=2-х - прямая, для построения нужны две точки, запишем их в таблицу: х= 0 4 у= 2 -2 Отмечаем точки (0;2) и (4;-2) в системе координат и проводим через них прямую линию. Подписываем график у=2-х
Смотрим на точку пересечения двух данных прямых, отмечаем точку М, ищем её координаты, записываем М(1; 1) Всё!
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
x^2 + 2x + 3x + 3 ≤ x^2 + 9
x^2 + 5x + 3 ≤ x^2 + 9
x^2 + 5x + 3 - x^2 + 9 ≤ 0
x^2 + 6x - x - 6 ≤ 0
x(x + 6) - (x + 6) ≤ 0
(x + 6)(x - 1) ≤ 0
x + 6 ≤ 0 ; x - 1 ≥ 0
x + 6 ≥ 0 ; x - 1 ≤ 0
x∈[ - 6 ; 1]