(2^2)^5 / 2^9 * 3^2 = 2^10/2^9 * 3^2 =2^1 * 3^2 = 2^1 * 3^1 * 3^1 = 18^1=18. 1) При возведении степени в степень - основание остается прежним, показатели степени перемножаются. 2) При делении чисел с одинаковыми основаниями , но разными показателями степени - основание остается, а показатели степени вычитаются. При делении чисел с разными основаниями, но одинаковыми показателями степени - основание - это частное от деления чисел, а показатель степени остается. 3) При умножении чисел с одинаковыми основаниями и разными степенями, основание остается, степени складываются; при умножении чисел с разными основаниями, но одинаковыми степенями - основания перемножаются, степень остается.
Исследование точек экстремума функции проведём по первой производной функции. Первая производная равна y'(x)=3*x²-6*x, её значения равны нулю х1=0 (производная меняет знак с + на минус, так что эта точка - точка локального максимума) х2=2 (производная меняет знак с минуса на =, так что эта точка - точка локального минимума). По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
Находим наибольшее целое решение:
Наибольшее целое решение: 2