Вчём суть чётности( нечётности) функции? есть правила: 1) если f(-x) = f(x) , то f(x) - чётная переводим на простой язык: если вместо "х" подставить "-х" и функция при этом не изменилась, то она ( собака серая) чётная. 2) если f(-x) = - f(x) , то f(x) - нечётная переводим на простой язык: если вместо "х" подставить "-х" и функция при этом поменяла знак, то она ( собака серая) нечётная. наш пример: f(x) = x⁴ + 0,5x³ f(-x) = (-x)⁴ + 0,5*(-x)³ = x⁴ - 0,5x³ ≠ f(x) ≠ -f(x) вывод: данная функция ни чётная, ни нечётная.
Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.