1) Построим графики у=(х-2)^2 и у=(х+2)^2 а) у=(х-2)^2=x^2-4x+4 (график - парабола, ветви вверх) 1. Найдем точки пересечения с осью Ох x^2-4x+4=0; D=16-16=0; х=2 2. Вершина имеет координаты (2;0) 3. Пересекается с осью Оу в точке (0;4) 4. Построим график (см. рисунок) б) у=(х+2)^2=x^2+4x+4 (график - парабола, ветви вверх) 1. Найдем точки пересечения с осью Ох x^2+4x+4=0; D=16-16=0; х=-2 2. Вершина имеет координаты (-2;0) 3. Пересекается с осью Оу в точке (0;4) 4. Построим график (см. рисунок) в) Проведем прямую у=1 2) Найдем площадь фигуры ограниченной параболами и прямой у=1 (заштрихована на рисунке) Площадь найдете как сумма трех интегралов
sinx=a
6a²-5a-4=0
D=25+96=121
a1=(5+11)/12=4/3⇒sinx=4/3>1 нет решения
a2=(5-11)/12=-1/2⇒sinx=-1/2⇒x=-π/6+2πk U sinx=-5π/6+2πk,k∈z
-7π/2≤-π/6+2πk≤-3π/2
-21≤-1+12k≤-9
-20/12≤k≤-8/12
k=-1 x=-π/6-2π=-13π/6
-7π/2≤-5π/6+2πk≤-3π/2
-21≤-5+12k≤-9
-16/12≤k≤-4/12
k=-1 x=-5π/6-2π=-17π/6