В левой части неравенства угадывается формула квадрата суммы, всё, что осталось, переносим в правую часть.
Если нужно, чтобы у неравенства не было решений, правая часть должна была отрицательной:
Вспоминаем, что нужно найти такие b, чтобы такое неравенство выполнялось при всех a. Относительно a левая часть либо линейная функция (при b = 1/2), либо квадратичная.
Разбираем случаи:
1) b = 1/2. Тогда при всех a должно быть так:
Понятно, что это выполняется не при всех a, так что b = 1/2 в ответ входить не должно.
2) b не равно 1/2. Квадратный трёхчлен должен принимать только положительные значения. Как известно, так будет, если: 1. Коэффициент при a^2 положительный и 2. Дискриминант отрицательный.
Давайте я вам объясню. Координаты, имеют вид (x;y), то есть, если дана некая функция, в нашем случае игрек зависит от икса. Нам требуется лишь подставить значение икса в координате, и посмотреть, будет ли координата игрека равна координате игрека данной функции. Сейчас вы поймете: Мы берем точку А (2;-1), и что бы проверить, проходит ли функция через данную точку, мы должны, взять значение икса в данной точке, и подставить данное значение в функцию:
Отсюда следует, что функция проходит через данную точку.
Данную операцию можно проделать и 2 задании, но зачем? Мы уже итак знаем что при х=2, у=-1. А значит, что функция не проходит через точку В.
Пусть х-скорость течения реки, то
(18+х)км/ч - скорость теплохода по течению
(18-х)км/ч - скорость теплохода против течения
Составим уравнение
50 8
+ = 3 ч
18+x 18-x
50(18-х)+8(18+х) = 3(18-х)(18+х)
900-50х+144+8х-972+3x^2=0
3x^2 - 42x+72=0
D=1764-864=900>0
x1=12 км/ч
х2=2км/ч
По логике скорость течения реки не может быть 12 км/ч, зн. скорость будет 2 км/ч