Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
task/30214294 решить уравнение : (2x²+5x+3) / (2x+3)=x² - x - 2.
решение (2x²+5x+3) / (2x+3)=x²-x-2 ⇔(2x+3)(x+1) / (2x+3) =x²-x-2
ОДЗ : 2x+3 ≠ 0
(2x+3)(x+1) / (2x+3) = x² - x - 2 ⇔ x + 1 = x² - x - 2 ⇔ x + 1 = (x + 1) (x - 2 ) ⇔ (x + 1 ) - (x + 1) (x - 2 ) =0 ⇔(x + 1 )(1 - (x - 2 ) ) =0 ⇔(x + 1 )(3 - x ) =0 ⇔
[ x + 1 =0 ; 3 - x = 0. ⇔ [ x = - 1 ; x = 3.
ответ: - 1 ; 3.
* * * ax²+bx +c = a(x -x₁)(x -x₂) * * *
2x²+5x+3 =0 ; D = 5² - 4*2*3 =25 -24 =1²
x₁,₂ =(-5 ± 1) /4 x₁ = (-5 -1) /4 = -3/2 , x₂ =(-5 +1) /4 = - 1
2x²+5x+3 =2( x - (-3/2) ) ( x- (-1) ) = (2x +3) ( x+1)
x² - x - 2 =0 ; D = 1² -4*1*(-2) =9 =3² ⇒
x₁ ,₂ =(1±3)/2 ⇒ x₁ = (1 -3) /2 = - 1 , x₂ = (1+3)/2 = 2 .
x² - x - 2 = (x -(-1) ) (x -2) = (x+1) (x -2)