Левая часть квадратного уравнения - это квадратный трехчлен.
Разложение квадратного трехчлена на множители
аx² + bx + c = а(х - х₁)(х - х₂), где х₁ и х₂ - корни квадратного трехчлена.
Воспользуемся этой формулой, применив ее справа налево:
1) х₁ = 2, х₂ = 3
(х - 2)(х - 3) = 0,
х² - 2х - 3х + 6 =0,
х² - 5х + 6 = 0
2) х₁ = 6, х₂ = 2
(х - 6)(х - 2) = 0,
х² - 2х - 6х + 12 =0,
х² - 8х + 12 = 0
3) х₁ = 5, х₂ = 3
(х - 5)(х - 3) = 0,
х² - 5х - 3х + 15 =0,
х² - 8х + 15 = 0
4) х₁ = 1, х₂ = 2
(х - 1)(х - 2) = 0,
х² - 2х - х + 2 =0,
х² - 3х + 2 = 0
Левая часть квадратного уравнения - это квадратный трехчлен.
Разложение квадратного трехчлена на множители
аx² + bx + c = а(х - х₁)(х - х₂), где х₁ и х₂ - корни квадратного трехчлена.
Воспользуемся этой формулой, применив ее справа налево:
1) х₁ = 2, х₂ = 3
(х - 2)(х - 3) = 0,
х² - 2х - 3х + 6 =0,
х² - 5х + 6 = 0
2) х₁ = 6, х₂ = 2
(х - 6)(х - 2) = 0,
х² - 2х - 6х + 12 =0,
х² - 8х + 12 = 0
3) х₁ = 5, х₂ = 3
(х - 5)(х - 3) = 0,
х² - 5х - 3х + 15 =0,
х² - 8х + 15 = 0
4) х₁ = 1, х₂ = 2
(х - 1)(х - 2) = 0,
х² - 2х - х + 2 =0,
х² - 3х + 2 = 0
а) (b+5a)(b-5a) - поменял местами 5a и b
это кароч формула сокращённого умножения b^2-25a^2
б)(4x-1)^2-2x(8x+3)=16x^2-8x+1-16x^2-6x - раскрыл скобки, первая скобка эт формула сокращённого умножения (a-b)^2=a^2-2ab+b^2, ну а со второй скобкой всё понятно
сокращаем 16x^2 и -16x^2 (взаимо уничтожаются)
получаем -8x+1-6x=-14x+1
Объяснение: