1) а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x) 2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x) 3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0 1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2 ответ: F(x)=x^3+2x^2+2 4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36 В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
Пусть первая бригада выполняет за смену х деталей, вторая бригада у деталей, третья бригада z - деталей. Тогда за смену три бригады выполняют вместе х+у+z=100 деталей (1). По условию у-х=5 и у-z=15. По-другому х=у-5 и z=y-15. Подставим в первое уравнение эти значения вместо х и z, получим у-5+у+y-15=100 3у-20=100 3у=100+20 3у=120 у=120:3 у=40 деталей в смену изготавливает вторая бригада. х=у-5=40-5=35 деталей в смену изготавливает первая бригада. z=у-15=40-15=25 деталей в смену изготавливает третья бригада. Проверка х+у+z=35+40+25=100. Всего 100 деталей изготавливают три бригады.
ответ: 35 деталей в смену изготавливает первая бригада, 40 деталей в смену изготавливает вторая бригада, 25 деталей в смену изготавливает третья бригада.
b^2 - 100 = 0
b^2 = 100
b1 = 10
b2 = -10