ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3
Объяснение:
Найдите корни уравнений
1. 1) x²-5x-5=x-5;
x²-5x-x-5+5=0;
x²-6x=0;
x(x-6)=0;
x1=0;
x2=6.
***
2) -2x²+7x=3x ;
-2x²+7x-3x=0;
-2x²+4x=0;
-2x(x-4)=0;
x1=0;
x2=4.
***
3) 2-7x²+1,8x=2-3x;
2-7x²+1.8x-2+3x=0;
-7x²+4.8x=0;
-x(7x-4.8)=0;
x1=0;
7x=4.8;
x2=4.8/7 =48/70.
***
4) -2x²+5=5-4x;
-2x²+4x=0;
-2x(x-2)=0;
x1=0;
x2=2.
***
5) -0,8x²-9,2x=2,1x ;
-0.8x²-9.2x-2.1x=0;
-0.8x²-11.3x=0;
-0.8x(x+14.125)=0;
x1=0;
x2=-14.125.
***
6) 2-0,7x²+3x=x+2;
-0,7x² +3x-x=0;
-0.7x²+2x=0;
-x(0.7x-2)=0;
x1=0;
0.7x=2;
x=2/0.7=20/7=2 6/7.
***
2. 1) x²-5x=5(5-x) ;
x²-5x-25+5x=0;
x²-25=0;
x²=25;
x=±5.
***
2) -2x²+7x=7x-32 ;
-2x²+32=0;
-x²=-16;
x²=16;
x=±4.
***
3) -0,7x²+5,6x=0 ;
-0,7x(x-8)=0;
x1=0;
x2=8.
***
4) 2x²-x=2-x;
2x²=2;
x²=1;
x=±1.
***
5) -0,8x²-9,2=4,5;
-0.8x²=9.2+4.5;
-0.8x²= 13.7;
x²= -13.7/0.8;
x²= -17.125; (x² не может быть отрицательным. Нет решения).
***
6) -0,7x²+x=x ;
-0,7x²=0;
x=0.
умножить -1 на (х-3)(х+3)
а дробь после равно на х+3 (прикрепила, как выглядить должно)
4/(х-3)(х+3) - (х+3)(х-3)/(х-3)(х+3) - (х+1)(х+3)/(х-3)(х+3) = 0
4-(х-3)(х+3)-(х+1)(х+3)/(х-3)(х+3)=0
ОДЗ
(х-3)(х+3)≠0
х≠ ±3
4-(х-3)(х+3)-(х+1)(х+3)=0
4-(х²-9)-(х²+3х+х+3)=0
4-х²+9-х²-4х-3=0
-2х²-4х+10=0
2х²+4х-10=0
х²+2х-5=0
д= 4-4*1*(-5)=24, д>0, 2 корня
х1,2= -2± √24 / 2
х1= -2 + 2√6 / 2 = -1+√6
х2 = -1-√6