S=d1*d2/2 24=6/2 *d2 d2= 24:3= 8 Тогда половина первой диагонали равна 3, а половина второй диагонали равна 4. Найдём сторону ромба по теореме Пифагора: а^2=3^2+4^2=25=5^2 а=5 Сторона ромба равна 5.
3) f(x)= 1. Сначала находим область определения этой функции. Функция задана многочленом, D(f)=R , ну или (-∞;+∞) 2. Находим производную. Применяем формулы (2*²=4x) и x=1 (4*x=4*1=4) Итак: f '(x)=4x-4 3. Приравниваем полученную производную к нулю. f '(x)=0, 4x-4=0, решаем уравнение. 4x=4 x=1 ---⁻---(1)---⁺--- проверка знаков: проверим (+). Подставляем в полученную производную, например, цифру 2 вместо x: 4*2-4=4, число положительное, значит ставим знак плюс. Проверим (-). Подставим -1, -4-4=-8, число отрицательное, значит в интервале минус. Когда минус переходит на плюс, это считается точкой минимума. Наоборот - максимума. У нас минимум. xmin=1
Для того чтобы решать такие уравнения, сначала необходимо найти ОДЗ (область допустимым значений), или те корни, которые обращают знаменатель дроби в нуль.
ОДЗ:
Дальше, чтобы избавиться от знаменателя, нужно привести дроби к общему знаменателю и умножить на него обе части уравнения:
Меняем знак второй дроби, чтобы у нас получилась формула сокращенного умножения, а вследствие и общий знаменатель, и умножаем на него.
Решив его по т. Виета путем подбора, получим корни Возвращаемся к ОДЗ и видим, что 2 - посторонний корень, поэтому исключаем его и записываем в ответ -5. ответ: -5
24=6/2 *d2
d2= 24:3= 8
Тогда половина первой диагонали равна 3, а половина второй диагонали равна 4.
Найдём сторону ромба по теореме Пифагора: а^2=3^2+4^2=25=5^2
а=5
Сторона ромба равна 5.
ответ : 5