М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LadyDiana17
LadyDiana17
13.12.2022 22:46 •  Алгебра

Знайдіть сторону ромба якщо його площа становить 24см 2 а одна з діагоналей дорівнює 6см

👇
Ответ:
13.12.2022
S=d1*d2/2
24=6/2 *d2
d2= 24:3= 8
Тогда половина первой диагонали равна 3, а половина второй диагонали равна 4.
Найдём сторону ромба по теореме Пифагора: а^2=3^2+4^2=25=5^2
а=5
Сторона ромба равна 5.

ответ : 5
4,6(31 оценок)
Открыть все ответы
Ответ:
Хз12334
Хз12334
13.12.2022
3) f(x)=2x^{2} - 4x
1. Сначала находим область определения этой функции. Функция задана многочленом, D(f)=R , ну или (-∞;+∞)
2. Находим производную. 
Применяем формулы (x^{n}) = nx^{n-1} (2*²=4x) и x=1 (4*x=4*1=4)
Итак: 
f '(x)=4x-4  
3. Приравниваем полученную производную к нулю. f '(x)=0,
4x-4=0, решаем уравнение. 
4x=4
x=1
---⁻---(1)---⁺---
проверка знаков: проверим (+). Подставляем в полученную производную, например, цифру 2 вместо x: 4*2-4=4, число положительное, значит ставим знак плюс. Проверим (-). Подставим -1, -4-4=-8, число отрицательное, значит в интервале минус.
Когда минус переходит на плюс, это считается точкой минимума. Наоборот - максимума. У нас минимум.
xmin=1

4) f(x)= \frac{2}{x} + \frac{x}{2}
1. D(f)=(-∞;0)∪(0;∞) 
2. f'(x)= - \frac{2}{ x^{2} } + \frac{1}{2}
3. - \frac{2}{ x^{2} } + \frac{1}{2} = 0
- \frac{2}{x^{2} } = - \frac{1}{2}
x^{2} = \frac{-2*2}{-1} = \frac{-4}{-1} = 4
x^{2} = 4
x_{1} = 2
x_{2} = -2

---⁺---(-2)---⁻---(2)---⁺---
xmax=-2 xmin=2 

2) f(x)= \frac{x^{3} }{3} - x^{2} -3x
1. D(f)=R
2. f'(x)= x^{2} -2x-3
3. x^{2} -2x-3=0 
решаем по дискриминанту, D = b^{2} - 4ac = 16 = 4^{2}
x1=-1
x2=3
--⁺--(-1)--⁻--(3)--⁺--
xmax=-1
xmin=3
4,4(19 оценок)
Ответ:
mintella2442
mintella2442
13.12.2022
Для того чтобы решать такие уравнения, сначала необходимо найти ОДЗ (область допустимым значений), или те корни, которые обращают знаменатель дроби в нуль.
\frac{x+3}{2+x} - \frac{x+3}{2-x}= \frac{20}{x^2-4}
ОДЗ: x^2-4 \neq 0
(x-2)(x+2) \neq 0
x-2 \neq 0   x+2 \neq 0
x \neq 2   x \neq -2
Дальше, чтобы избавиться от знаменателя, нужно привести дроби к общему знаменателю и умножить на него обе части уравнения:
\frac{x+3}{2+x} - \frac{x+3}{2-x}= \frac{20}{x^2-4}
\frac{x+3}{x+2} - \frac{x+3}{2-x}= \frac{20}{(x-2)(x+2)}
Меняем знак второй дроби, чтобы у нас получилась формула сокращенного умножения, а вследствие и общий знаменатель, и умножаем на него.
\frac{x+3}{x+2} +\frac{x+3}{x-2}= \frac{20}{(x-2)(x+2)}
\frac{(x+3)(x-2)+(x+3)(x+2)}{(x-2)(x+2)} = \frac{20}{(x-2)(x+2)} /*(x-2)(x+2)
(x+3)(x-2)+(x+3)(x+2)=20
x^2-2x+3x-6+x^2+2x+3x+6-20=0

2x^2+6x-20=0/:2
x^2+3x+10=0
Решив его по т. Виета путем подбора, получим корни x_{1}=-5;x_2=2
Возвращаемся к ОДЗ и видим, что 2 - посторонний корень, поэтому исключаем его и записываем в ответ -5.
ответ: -5
4,6(45 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ