2) x=0, y=-4 (это точки пересечение графика с осью ОУ) y=0, x=-2;+2 (это точки пересечение графика с осью ОХ)
3) f(x)>0 при хЭ (минус бесконечности; -2) и (2; плюс бесконечнсти) f(x)<0 при хЭ (-2;2)
4) y'=2*x (производная) y'=0 2*x=0 x=0- точка экстремума. f '(x)>0 при xЭ (0; плюс бесконечности) f '(x)<0 при xЭ (минус бесконечности; 0)
5) Функция возрастает на [0; плюс бесконечности) Функция убывает на (минус бесконечности; 0]
6) Хmin=0- точка минимума f(Xmin)=-4 7) на графике рисуешь что-то похожее на параболу, с вершиной в точке (0;-4) тоесть, у тя сначало функция убывает до этой точки, затем возрастает. А точки, которые были найдены в пункте 2) это есть точки пересечения с осями, их тоже надо на графике обозначить.
ОДЗ: х ≠ 0
1) Найдём производную функции:
f '(x) = 2x * x^2 - 4x^2 + 2x / x^4 = - 2x + 2 / x^3
2) Приравняем производую к нулю и решим уравнение:
- 2x + 2 / x^3 = 0
2х + 2 = 0
х = -1 не входит в промежуток [0,5; 3]
3) Теперь возьмём значение функции из отрезка: 0,5 и 3 и подставим эти значения в первоначальную функцию:
у (0,5) = 2 * 0,5 + 1 / 0,5^2 = 2 / 1 = 2
y (3) = 2 * 3 + 1 / 3^2 = 7 / 9