1. Достраиваем исходный прямоугольный треугольник до прямоугольника. 2. Проводим вторую диагональ получившегося прямоугольника. 3. Получилось четыре одинаковых прямоугольных треугольника. 4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей. 5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника. 6. Площадь прямоугольника 8*5=40 см². 7. Площадь вписанного прямоугольника 40/4=10 см².
Это все параболы и у 1 и 2 ветви вверх, найдем точки пересечения с осью ох: x^2-5+1=0, x^2-4=0, x^2=4, x1=2, x2=-2, вершина параболы под осью ох от -2 до 2; (под осью ох у<0); ответ: х принадлежит промежутку (-2;2). Если ошибка в условии, то x^2-5x+1=0, Д=25-4*1*1=21, х1=(5+корень из21)/2; х2=(5-корень из 21)/2; ответ: х принадлежит промежутку ((5-кор.из21)/2; (5+кор.из21)/2). 2) Д<0, значит корней нет, вся парабола над осью ох, у>0, ответ: х принадлежит промежутку (-беск.;+бескон.) 3)-x^2+3x-1<0, x^2-3x+1>0; ветви вверх, найдем, пересекает ли парабола ось ох: x^2-3x+1=0, D=9-4*1*1=5; х1=(3+кор.из5)/2; х2= =(3-кор.из5)/2; вершина параболы под осью ох, там у<0; нам нужны ветви над осью ох, там у>0; ответ: х принадлежит (-беск.; (3-кор.из5)/2)U ((3+кор.из5)/2; +бескон.)
(x-y)(x+y)-2(x+y)
(x+y)(x-y-2)