1) Область определения функции и область значений функции.
Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f(x) определена.
Область значений функции - это множество всех действительных значений y, которые принимает функция.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знакопостоянства функции.
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
4) Монотонность функции.
Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
5) Четность (нечетность) функции.
Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.
Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.
6) Ограниченная и неограниченная функции.
Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.
7) Периодическость функции.
Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими.
Выбирай из того, что
16 - 9а² - 72ab - 144b² =
= - ( (3a)² + 2*3a*12b + (12b)² - 4² )=
= - ( (3a + 12b)² - 4² ) =
= - (3a + 12b - 4)(3a + 12b + 4)
2)
ac³+c³ - 27a - 27 =
= c³(a + 1) - 27(a + 1) =
= (a + 1)(c³ - 27) =
= (a + 1)(c³ - 3³ ) =
= (a + 1)(c - 3)(c² + 3c + 3²) =
= (a + 1)(c - 3)(c² + 3c + 9)
3)
32 + 243a⁵ = (3a)⁵ + 2⁵ =
= (3a + 2)( (3a)⁴ - (3a)³ * 2 + (3a)² * 2² - 3a * 2³ + 2⁴ )
= (3a + 2)( 81a⁴ - 27a³ * 2 + 9a²* 4 - 3a * 8 + 16)
= (3a + 2)(81a⁴ - 54a³ + 36a² - 24a + 16 )