(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410 25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410 169х²+90х+34≤ 203х²-165х+459 169х²-203х²+90х+165х+34-459 ≤ 0 -34х²+255х-425≤0 ( : -17) 2х²-15х+25≥0 D=225-200=25=(5)² x1=(15+5)/4=5 х2=5/2=2,5 2(х-5)(х-2,5)≥0 (:2) (х-5)(х-2,5)≥0 2,55 х + - + нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞ точки 2,5 и 5 тоже входят , так как неравенство не строгое тогда запишем : х∈(-∞;2,5]U[5;+∞)
Пусть они выполняли некоторое задание S, причем производительность первого была х, второго - у. Искомое время есть S/x или S/y/. Запишем уравнения. S=(x+y)*8 S/2x + S/2y=25 S*(1/x + 1/y)=50 S*(x+y)/xy=50 из первого уравнения x+y=S/8; y=S/8 - x S*S/8*x*y=50 Подставляем и имеем S^2 - 50*x*S + 400*x^2=0 делим x^2 и получаем (S/x)^2 - 50*(S/x) + 400=0 S/x=40 S/x10 Так как обе переменные входят в уравнение равноправно, это и есть наши х и у. Очевидно, что чем меньше производительность, тем больше время. Значит наш ответ S/x=40 S/у=10 или наоборот Очевидно, что чем меньше производительность, тем больше время. Значит наш ответ S/x=40
За теоремою Вієта :
x1+x2=-p. 1,5+x2=-p. -p=-2,5. p=2,5
x1×x2=-6. 1,5×x2=-6. x2=-4