Пусть v катера будет х, а v течения реки будет у. Если катер часа по течению, то за это время он расстояние: (х+у)3. Когда он проходил по озеру, то находился в стоячей воде без течения и расстояние 3х. За 6 часов он расстояние 114км, и теперь составим уравнение:
(х+у)3+3х=114. Разберём вторую часть задачи. Катер против течения 4 часа, поэтому за это время он х-у)4. Так как он расстояние на 10 км больше, чем за 3 часа по озеру, то по озеру он пройдёт 2х и разница составляет 10км. По этим данным составим второе уравнение:
(х-у)4-3х=10. Решим систему уравнений:
{(х+у)3+3х=114
{(х-у)4-3х=10
{3х+3у+3х=114
{4х-4у-3х=10
{6х+3у=114 |÷3
{х-4у=10
{2х+у=38
{х=10+4у.
Подставим эти значения в первое уравнение:
2х+у=38
2(10+4у)+у=38
20+8у+у=38
9у=38-20
9у=18
у=18÷9
у=2; итак v течения реки=2км/ч
Теперь подставим в уравнение значение у:
х=10+4у
х=10+4×2=10+8=18км/ч.
ответ: v катера=18км/ч;
v течения реки=2км/ч
х - ширина прямоугольника
х + 8 - длина прямоугольника
(х + 8) * х = 65
х² + 8х - 65 = 0
Получили квадратное уравнение, ищем корни
х первое, второе = (-8 плюс минус √64+260) / 2
х первое, второе = (-8 плюс минус √324) / 2
х первое, второе = (-8 плюс минус 18) / 2
Отрицательный корень сразу отбрасываем, так как ширина не может быть отрицательной.
х = 5 это ширина прямоугольника (b)
5+ 8 = 13 это длина прямоугольника (а)
Р(периметр прямоугольника) = 2а + 2b
Подставляем, находим периметр
Р = 2 * 13 + 2 * 5 = 36 (см)