1) (x2-9)(x+4)<0
(x2-9)(x+4)=0
x2-9=0 x+4=0
x2=9 x=-4
x=3,-3
x(-бесконечность;-4)u(-3;3)
2)y2-xy=33 y2-11y-y2=33 -11y=33 y=-3
x-y=11 x=11+y x=11+y x=11-3=8
(8;-3)
3)a1=16, d=20-16=4
an=16+4(n-1)
а)16+4n-4=44
4n+12=44
4n=32
n=8 т.к. 8 целое число, значит подходит
б)16+4n-4=52
4n=40
n=10 подходит
в)4n+12=68
4n=54
n=54\4 нецелое число не подходит
г)4n+12=64
4n=52
n=13 подходит
ответ: подходят варианты а, б и г
4)bn=b1*q^n-1
bn=-128*(-1\2)^n-1
посмотрев на формулу данной прогрессии, мы видим, что её нечетные члены отрицательны и их значения убывают, а четные члены положительны, их значения также убывают(у нечетных членов степень при q четная, а у четных - нечетная), то есть четные члены больше нечетных, отсюда следует, что не является верным неравенство г)
5)a)(n+2)!(n+1)>(n+1)!(n+2)
т.к. n!+2!=(n+2)!
n!+1!=(n+1)!, n!=n!, а 1!=1, 2!=1*2=2
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
Объяснение
надо найти точку пересечения графиков и с этой точки опуститься на ось ОХ, эта абсцисса и будет ответом