Решение системы уравнений у= -4
k= -11
Объяснение:
Решить систему уравнений методом подстановки.
5−5(0,2y−2k)=3(3k+2)+2y
4(k−5y)−(2k+y)=10−2(2k+y)
5-у+10k=9k+6+2y
4k-20y-2k-y=10-4k-2y
10k-9k-y-2y=6-5
2k+4k-21y+2y=10
k-3y=1
6k-19y=10
Выразим k через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
k=3y+1
6(3y+1)-19у=10
18у+6-19у=10
-у=10-6
-у=4
у= -4
k=3y+1
k=3*(-4)+1
k= -11
Решение системы уравнений у= -4
k= -11
1)Решение системы уравнений х= -17
v=7
2)Координаты точки пересечения графиков (7,7; -19,25)
Объяснение:
1. Реши систему уравнений методом подстановки.
−x−2v+1=4
x= −10−v
Х уже выражено во втором уравнении, подставляем выражение в первое уравнение и вычисляем v:
-(−10−v)-2v=3
10+v-2v=3
-v=3-10
-v= -7
v=7
Вычисляем х:
x= −10−v
х= -10-7
х= -17
Решение системы уравнений х= -17
v=7
2. Найди точку пересечения графиков, заданных формулами
15x+2y=77
y= −2,5x без построения.
Первое выражение преобразуем в уравнение функции:
15x+2y=77
2у=77-15х/2
у=38,5-7,5х
Теперь приравняем правые части уравнений (левые равны) и вычислим х:
−2,5x =38,5-7,5х
-2,5х+7,5х=38,5
5х=38,5
х=38,5/5
х=7,7
Вычисляем у:
у=38,5-7,5х
у=38,5-7,5*7,7
у= -19,25
Координаты точки пересечения графиков (7,7; -19,25)
cos²x+sin²x-1=1-1=0