8<x<20 км.
Объяснение:
Пусть x км проплыли туристы по течению реки, тогда против течения они проплыли (20−x) км.
7−1 = 6 км/ч — скорость лодки против течения реки;
7+1 = 8 км/ч — скорость лодки по течению реки.
Чтобы найти время, надо расстояние поделить на скорость, поэтому:
20−x6 ч. — время, затраченное туристами на путь против течения реки;
а x8 ч. — время, затраченное туристами на путь по течению реки.
Зная, что в пути туристы были менее трёх часов, составим неравенство:
20−x6+x8<3.
Чтобы избавиться от дроби, умножим обе части неравенства на 48.
(20−x6+x8)⋅48<3⋅48;
20−x6⋅48+x8⋅48<144;
8⋅(20−x)+6⋅x<144;
160−8x+6x<144;
−2x<−16
x>8.
Правильный ответ: 8<x<20 км.
Объяснение:
Обозначим за Х количество мест в ряду в 1-м зале
Тогда (Х+10) - количество мест в ряду во 2-м зале
420/Х - количество рядов в 1-м зале
480/(Х+10) - количество рядов во 2-м зале
420/Х-480/(Х+10)=5
приводим левую часть уравнения к общему знаменателю и складываем:
(420Х+4200-480Х)/Х(Х+10)=5
(4200-60Х)/(Х²+10Х)=5
делим обе части уравнения на 5:
(840-12Х)/(Х²+10Х)=1, или имеем право записать как:
840-12Х=Х²+10Х
Х²+22Х-840=0
Решая полученное квадратное уравнение, находим, что:
Х₁=20
Х₂=-42 данный корень не удовлетворяет условию задачи, поскольку количество мест в ряду не может быть отрицательным.
20 мест в ряду в 1-м зале
30 мест в ряду во 2-м зале (на 10 мест больше, чем в ряду первого зала)
21 ряд в 1-м зале
16 рядов во 2-м зале (на 5 рядов меньше, чем в первом зале