Решение: В левой части неравенства произведение двух положительных величин, т.к. при любых значениях переменной х. В этом случае неравенство решений не имеет
Если условие выглядит так: , то решение следующее: Пусть , тогда ___+__(1)___-____(3)___+____t
t ∈ [1 ; 3] Так как 3 > 1, то x ∈ [0 ; 1] ответ: [0 ; 1].
3x+2y-6=0 чтобы найти точку пересечения с осью абсцисс, нужно y приравнять к нулю в уравнении и выразить х, -3х+2*0-6=0 х=-2 значит точка пересечения с осью абсцисс (ох) это точка (-2,0) чтобы найти точку пересеч. с осью ординат нужно х приравнять к нулю и найти у -3*0+2y-6=0 y=3 значит точка пересечения с оу точка (0,3) если точка к принадлежит графику, значит при подстановки туда координат точки к мы получим тождество, т.е. первую координату точки к ставим вместо х, а вторую координату вместо у -3*1/3 +2*3,5-6=0 получили тожедство 0=0, значит точка принадлежит.
бабка. рисунок е. ванюковабабка была тучная, широкая, с мягким, певучим голосом. «всю квартиру собой » – ворчал борькин отец. а мать робко возражала ему: «старый куда же ей деться? » «зажилась на – вздыхал отец. – в инвалидном доме ей место – вот где! » все в доме, не исключая и борьки, смотрели на бабку как на совершенно лишнего человека. бабка спала на сундуке. всю ночь она тяжело ворочалась с боку на бок, а утром вставала раньше всех и гремела в кухне посудой. потом будила зятя и дочь: «самовар поспел. вставайте! попейте горяченького-то на » подходила к борьке: «вставай, батюшка мой, в школу пора! » «зачем? » – сонным голосом спрашивал борька. «в школу зачем? тёмный человек глух и нем – вот зачем! » борька прятал голову под одеяло: «иди ты, » в сенях отец шаркал веником. «а куда вы, мать, галоши дели? каждый раз во все углы тыкаешься из-за них! » бабка торопилась к нему на . «да вот они, петруша, на самом виду. вчерась уж грязны были, я их обмыла и поставила».
В левой части неравенства произведение двух положительных величин, т.к.
В этом случае неравенство решений не имеет
Если условие выглядит так:
Пусть
___+__(1)___-____(3)___+____t
t ∈ [1 ; 3]
Так как 3 > 1, то
x ∈ [0 ; 1]
ответ: [0 ; 1].