объяснение:
выражение ( а - 6 ) * ( а + 2 ) - ( а + 5 ) * ( а - 7 ) и найдем значение выражения при а = - 6,5.
раскрываем скобки. для этого каждые значения в первой скобке, умножаем на каждое значение во второй скобке, и складываем их в соответствии с их знаками. тогда получаем:
( а - 6 ) * ( а + 2 ) - ( а + 5 ) * ( а - 7 ) = a ^ 2 + 2 * a - 6 * a - 6 * 2 - ( a ^ 2 - 7 * a + 5 * a - 5 * 7 ) = a ^ 2 + 2 * a - 6 * a - 12 - ( a ^ 2 - 7 * a + 5 * a - 35 ) = a ^ 2 - 4 * a - 12 - ( a ^ 2 - 2 * a - 35 ) = a ^ 2 - 4 * a - 12 - a ^ 2 + 2 * a + 35 = - 4 * a - 12 + 2 * a + 35 = - 2 * a + 23 = - 2 * ( - 6.5 ) + 23 = 13 + 23 = 36.
с)
Функция у = - х - линейная. Так как к = - 1, - 1 < 0, то функция является убывающей на всей области определения.
Своего наибольшего значения на [-π;3] она будет достигать при наименьшем значении аргумента , т.е. при х = - π.
у = π - наибольшее значение функции.
Своего наименьшего значения на [-π;3] она будет достигать при наибольшем значении аргумента , т.е. при х = 3.
у = - 3 - наименьшее значение функции.
d) y = x/2 - 4 - линейная. Так как к = 1/2, 1/2 > 0, то функция является возрастающей на всей области определения.
При х = 4 функция будет достигать наибольшего значения:
у = 4/2 - 4 = -2;
у = - 2 - наибольшее значение функции.
При х = 0 функция будет достигать наименьшего значения:
у = 0/2 - 4 = -4;
у = - 4 - наименьшее значение функции.
ответ на картинке внизу страницы